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Fermi transport and Weylian electromagnetism

GEOFFREY MARTIN
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Abstract. This article describes a class of geometric structures on the cotangent bun-
dle of space-time in which the vector potential of the electromagnetic field is related
to the dilation 1-form of a semi-metric connection. These geometries satisfy a set of
postulates that globalize the postulates of special relativity. When the field strength
vanishes the resulting geometric structure realizes Fermi transport as parallel transla-
tion relative to a connection on the cotangent bundie.

This article describes an approach to classical electromagnetism that is in spirit sim-
ilar to the description given by H. Weyl; see [5]. Weyl’s treatment of electromagnetism
inspired the development of gauge theory in quantum mechanics, but as a classical the-
ory it was flawed. The difficulties with Weyl’s theory can be traced to the fact that it
does not provide a natural representation of the Lorentz force law. In Weylian electro-
dynamics the vector potential is represented as the dilation of a semimetric connection;
and consequently the vector potential enters into the mechanical equations of motion.
Recall that a connection V is semimetric for a metric g if there is a 1-form ) called
the dilation of V suchthat Vg = \ ® ¢g. This article shall show that when space time
geometry is lifted to the cotangent bundle a new structure emerges in which the vector
potential appears as an dilation, but in a way that is consistent with the Lorentz force
law.

The construction that accomplishes this is based upon an extension of special relativ-
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ity to manifolds. In general relativity, special relativistic effects are partially modeled by
Fermi transport. Using techniques developed in [3], we show that on the cotangent bun-
dle of space-time there is a natural almost Kahler structure from which Fermi transport
can be recovered. Structures that give Fermi transport can be characterized intrinsically
by two conditions that are extensions of the two axioms of special relativity; namely, the
equivalence of Galilean frames and the constancy of the speed of light. Just asin Weyl’s
construction, it is the second axiom that allows the vector potential to be represented as
a dilation. The requirement that the speed of light is the same in all frames is equivalent
to the condition that all frames possess the same light cone. This condition is most easily
implemented by the use of semimetric connections. Just as in Weyl's theory, the dilation
of these connections can be related to the vector potential, however in this contructions
the vector potential is also related to its standard representation in mechanics as an affine
translation.

This article is divided into three parts. The first section reviews material from [3]
needed in this construction. In the second section we show how geometric structures of
section 1 can be used to realize Fermi transport in terms of connections on the cotangent
bundle. In the last section we study these connections intrinsically and give a charac-
terization of «Fermi like» connections that lead to a formulation of elcctromagnetism in
terms of semimetric geometry. Finally, I would like to thank Blake Temple for many
conversations that helped in the exposition of this material.

SECTION 1. NONLINEAR GEOMETRIES

We use the following notation. Let M be a C* -manifold. Let F( M) be the ring
of germs of C*®-functionson M. Denote the module of C* — (p, g)-tensor on M
by T¢»9(M). Denote the module of smooth vector fieldson M by X(M), and the
module of g -formson M by £4(M). If X isasubbundle of TM, let (P9 (X) be
the (p, q)-tensors which when viewed as g -linear maps take their values in the p -fold
tensor product of X. In particular, denote the vector fields with valuesin X by X'(X).
If feF(M), then f isconstantalong X if Vf=0 forall V € X(X).

This section presents the results of [3] needed in the present construction. This is
done for the sake of completenes, and because the results of [3] are not widely known.
The discussion of [3] concerns the notion of a non-linear geometry. These structures
are natural extensions of the geometric structure determined by a linear connection on
the cotangent bundle. Let M be an even dimensional smooth manifold. A nonlinear
geometry on M is givenby atriple ((X,Y),g,w). Here w is a symplectic 2-form on
M. X and Y are complementary Lagrangian subbundles of T'M, and g is a metric
defined only along X . Inthe following it shall always be assumed that X is integrable.

EXAMPLE 1.1. The example that motivates this definition is obtained when M = T*N
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and w is the canonical symplectic form. X is the vertical bundle VT*N. If q is
metric on N, then g is defined along X by affine translation of ¢q. Y is chosen to
be the horizontal distribution of the Levi-Civita connection; although in the following
applications any horizontal Lagrangian distribution that contains the metric Hamiltonian
vector field will suffice.

Atriple ((X,Y), g,w) determines apairof (1,1)-tensorson M. Most obvious is the
projection P € T(I:V(Y). Denote the complement of P by P+ € F1D(X). Note
that, since X and Y are Lagrangian, P has the property that i( P)w = w. Next, there
is an almost complex structure J € T (M) defined as follows. For U € X(X)
define JU € X(Y) sothat g(V,U) = w(V,JU) forall V € X(X). ForU € X(Y)
define JU € X(X) sothat g(JU,V) = w(U,V) forall V € X(X). Using J,
the metric g can be extended to T'M by requiring that for U,V € X(M)g(U,V) =
w(U,JV). Itiseasytosecthat ¢ isanalmost-Kahlermetric and w is the corresponding
almost-Kahler form.

A non-linear geometry determines a pair of connections on M. Both connections
are defined in terms of a pair of connctions along a distribution. A connection along
a distribution X is an R-linear map D : X(X) x X(X) — X(X) that is linear
over F( M) in the first entry and satisfies the usual derivation property in the second.
If Y is complementary to X, then D is Y — symmetric if for U,V € X(X)
D,V —D,U-PL[U,V] = 0. The following propositions define a pair of connections
determined by a triple ((X,Y),g,w).

PROPOSITION 1.1. If V : X(M) x X(M) — X(M) defined by

() forUe X(X) and V € X(Y),V,V = PL{U,V] and V,;V = P[U,V],
and

@) for U,V € X(X) (or X(Y)) if (Z)w = Lyi(V)w then Vy,V = PLZ
(orPZ), then V is a symmetric connection on M that satisfies VP = Vw = 0.
Further, if X(orY') is infegrable the V is flat along X (orY).

PROPOSITION 1.2. Let D(orD') be Levi-Civita connection for g along X (orY). If
V:X(M)x X(M) - X(M) isdefined by

() for U,V € X(X)(orX(Y)) let V,;V = D,;V(DyV), and

() forUeX(X) and V € X(Y) let Vi,V =JDyJV and V,U = JDyJU.
then V 1Is a connectionon M that satisfies VP =VJ =0 and Vw=0. m

The connection V is generally known as the Botf connection and was first used by
H. Hess in [2]. In the case where J is integrable, the connection V has a torsion tensor
of type (1,1) and is therefore orthogonal to the hermitian connection. In the following
V is called the inertial connection determined by ((X,Y),g,w).
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An important characteristic of the inertial connection is that the torsion tensor de-
termines the curvature. If B and T are the torsion and curvature of a connection D,
recall that the first Bianchi identity states that Alt(R) = dT, where All is the skew
symmetrization operator and d is the exterior derivative defined by D on vector val-
ued forms. The inertial connection satisfies a stronger set of conditions.

PROPOSITION 1.3. (i) For U,V € X(X) and Z,W € X(M)

w(R(U,VYZ,W) = w(dT(U,V,PZ), Prw)+
+w(dT(U,V,PW),PL2).

(i) ForU,VeX(Y)and ZW € X(M)

w(R(U,VYZ, W) = w(dT(U,V,Pt2), PW)+
+w(dT(U,V,PW) , PZ).

The other components of the curvature are also determined by d T, but we shall not
need these results here; (see [3]).

Another uscful property of an incrtial connection is that the torsion determines the
differencetensor §$ = V-V. If U € X(¥) and V € X (X)), then from the definitions
of V and T itisclearthat S(U,V) = —P*T(U,V) and S(V,U) = —PT(V,U).
The next proposition shows that T" also determines the value of § along X and Y.

PROPOSITION 1.4. (i) For U, V,\W € X(X)w(W,PT(V,JV)) = g(U, JS(V,W)),
and
(i) For U, V,W € X(Y)w(W,P+T(V,JV)) = (U, S(V,W)). "

Nonlinear geometries are useful in relativity because they provide a geometric calcu-
lus for frames of observers of a spacc time N. Although a frame is usually represented
by a time-like vector field, it is more natural in this context to take the dual point of
view and identify a frame with a field of time-like 1-forms . Foreach p € N, A is
the clock determined by an observer of the frame at p. A curve « is parameterized by
the frame’s clock’s if A(«y) = 1. If dx = 0 the frames is said to be synchronous. A
locally defined function ¢ that satisfies d¢ = ) is a time function for a synchronous
frame since if ~yis parameterized by the frame, then @(y(t)) = t + a. To investigate
the special relativistic properties of frames in the setting of general relativity consider a
class of framcs (O that has the property that for cach p € N and any time-like 1-form
A € T"N, thereis a unique p € O suchthat p, = A. Such a sct of frames is said
to be complete. The standard example of a complete sct of frames is the sct of Galilcan
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frames given by the time-like constant differential 1-forms on Minkowski space. Since
differential 1-forms determine submanifolds of 7*N that are transverse to the vertical,
one notes that a complete set of frames determines a local foliation of the light cone that
is transverse to the vertical.

To apply the geometric construction of this section to relativity, the symplectic man-
ifold M will be interpreted as the space of observers, for a space time N, M C T N.
If the distribution Y is integrable, the leaves of Y represent a complete set of frames.
The condition that Y be Lagrangian implies that ¥ determines a complete set of syn-
chronous frames. The leaves of X decompose M into classes of simultaneous ob-
servers. For a space-time N, X = VT*N. The advantage of this point of view is that
by using the Bott connection one can associate an affine structure with any complete set
of synchronous frames. This affine structure agrees with the coordinate affine structure
when the complete set is a set of time-like 1-forms that are constant in some coordinate
system.

SECTION 2. FERMI TRASPORT

Let N be a Lorentzian manifold with a Lorentzian metric ¢q. Let V% be the Levi-
Civita connection on N. If 4 : R — N is a non-lightlike curve, then there is a con-
nection V¥ defined along ~ that is characterized by the conditions (i) if « is geodesic,
then VF = 4*VL, (ii) if |4| is constant, then Vf/dtf'y =0, Gii)if W € X(y*TN)
is orthogonal to 4 and 7"Vg,q,%¥, then V{,, W = 4*V§,,,W. This connection is
known as the Fermi connection along ~y and has the explicit form

Foorr . oxorL a(9) N ol oy s
@1 VEW = VLW T (D O e W T 0)4)

where o : TN — {—1,1} is given by o(v) = —sign(g(v,v)) for v € TN. Inthe
following we shall suppress pullbacks by ~v*.

This section will show how this formula can be obtained from an inertial connection.
First note that nonlinear geometries modeled on the cotangent bundle admit an additional
structure. There exists a 1-foorm « such that do = w and «|y = 0. The vector
field X, defined by (X _ )w = « has the properties that X € X(X) and anw =
w. Because of the latter property, X is called a homogeneity operator for the triple
((X,Y),g,w).

To obtain (2.1) from an inertial connection, w must be the canonical 2-form and
X = VT*N. The problem is to determinate Y and g. The first restricion on Y is
that the fiber distance function p must be constant along Y. Recall that p € F(T*N)
is defined by p(p) = |g(p,p)|? for p € T"N,,, andlet £: T°N — TN be the
Legendre map defined by the metric. Define j @ VTN, — T'Ny by j = Lo If
v : R — N, then the natral lift of vy to T*N isdefinedby 7 = £-14.

o
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LEMMA 2.1. If p is constant along Y, then forany v : R — NP+4 = j71VL 4.
&

Proof. Let H be the horizontal distribution of the Levi-Civita connection, and let Py
be the projection onto H. Let Z, be the metric Hamiltonian vector field. Since p
is constant on Y,Z, € X(Y). However, £ = 7*Z, and so Pq = Zo|:1- Since
Z, € X(H) it follows that P4 = PyA. =

Denote by g the affine eﬂxtension of g to VT"N. Note that g|, = j*gu,- Also,
if W e X(N) denote by W the lift of W to Y. In order that an inertial connection
induces a metric transport along curves on N, g must be conformal to g; that is, there
is ¢ € F(T*N) suchthat g = pg.

PROPOSITION 2.1, If ¢ and p are constant along Y, then forany v : R — N there
exist a pair of connections VV and V" along ~ such that for W € X(y*TN)VY
and VH arc given by

¢ VIW=nVeW = VW w TGV W),
@3 VLW =iVl W = VLW = iSGT VAT,

Proof. Extend W € X(3*TT*N) by V -translation along X to a vector field w
defined in a neighborthhood of #. This is possible since the facts that dw = 0 and X
is integrable imply that the curvature R of V satisfies R(U,V)Z = 0 for U,V €
X(X). Now since P4 =7,

ViW = VW + (V= V)W = VW + PTGV A, W),

But, since ¢ is constant along Y, ﬂ*V;TW = Vg’ W. The second identity follows simi-
larly. L]

In Proposition 2.1 the conformal properties of g were used only to lift the Levi-
Civita connection to 7 N. For this construction the most important implication of the
conformal condition is that the horizontal component torsion of the inertial connection
is determined by ¢. Define o : T*N — {—1,1} by a(p) = —sign(q(p,p)).

LEMMA 2.2. Ifthercis p € F(T*N) suchthat g = g, then for U € X(X)JU =
o(JU) and for U € X(V)JU = L(j~'n.U).

Proof. Note that if V € X(X), then w(V,U) = i(V)(w,U). Therefore if U,V €
X(X), then g(V,U) = @€ '(GUY(SjV) and w(V,JU) = «(V)(x,JU), and so
JU = p(jU). The other identity follows similarly. .
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PROPOSITION 2.2. If p is constant along Y and g = p*g, then forany v: R — N
and any W € X(y*TN)
.k .
PTG V54, W), =55 (aW, V54,7 +
2.4) p
oL T R A
+ g4, V4N - qW, 1) V5 9)
JUY R S | ko . AN |
S(TIVEA T Wy =5 <<I('7,Vd’7)l W+
& 2 T
2.5)
+ q(W, )7 Vi~ o(w, V5 4) j_14)

Proof. First note that if « is the canonical 1-form, then X, is a homogeneity operator.
Since V is metric for § along X, and g is conformal to g, it follows that for U,V €
X(X)

S(U,V) = Zk% (3(X,, NV +(V, X )U —5(U,V)X,)
Now by proposition 1.4, it follows that for U € X(Y') and V € X(X)
PT(U,V) = 2—16-32— (8(X,, JNIV+ 5V, X )U —
- g(JU,V)JX,)

Since Xal,-y = j~1.~ (2.4) and (2.5) now follow from Lemma 2.2. n

By comparing (2.1), (2.4) and (2.5) it is easily seen that proposition 2.1 implies the
following.

PROPOSITION 2.3. If g = p~2°g, then VF = (VY + V) /2. .

Along curves of constant length it is seen that V¥ = V# | and so in this case both V¥
and V# give the Fermi connection. Aninertial connection can be defined so that V# =
V¥, but the torsion does not satisfy the propositions of section 1. Also note that the fact
that V# = VV = V¥ along unit curves implies that lifted curves which are geodesics
of the inertial connection are just those curves with Fermi parallel acceleration.

SECTION 3. WEYLIAN ELECTROMAGNETISM

In the last section it was shown that certain inertial connections on T*N determine
connections along curves on N, and further that the Fermi connection is among these.
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Since Fermi transport represents the effects of special relativity in the frame of an accel-
erated observer, it is natural to ask if the principles of special relativity can be formulated
in terms of inertial connections. Here we present two criteria that determine Fermi trans-
port up to a scale and a choice of zero section. These criteria extend to manifolds the two
postulates of special relativity that state (i) Galilean frames are physically indistinguish-
able and (ii) the speed of light is an invariant of all Galilean frames. The first postulate
expresses a homogencity condition on quantities obscrved in a frame. However, if this
principle is extended to manifolds, it can only be required to hold infinitesimally and
only for simultancous observers. Recall that two observers represented by p,g € M
are simultaneous if p and ¢ lie in the same leaf L of X. The inertial and Bott con-
nection determine a singular G-bundle G over L that is associated with the vector
bundle Y|, . Foreach p € L, G, is the smallest Lic subgroup of GI(Y,) that contains
the endomorphisms of Y, gencerated by choosing a point ¢ € L and composing V -
translation along the affine geodesic A from p to ¢ with V - translation along A from
g to p. G, canbe interpreted as the group of infinitesimal kinematic transformations
betwenn p and simultaneous observers in neighboring frames. If M = T"N and V
gives Fermi translation, then G, = Cso(Y)), the group of linear conformal maps of
Y, If g, isthe Lic algebraof G, then by the remark before Proposition 1.4 it follows
that g, is generated by the image of the map PT : X, — End(Y,) which is given by
PT(v)(v) = PT(v,u) forve X, and v €Y,

DEFINITION 3.1. ((X,Y),g,w) is homogencous if there exists k € R such that for
U,VeX(X) and W e X(X)

3.1 sR(U, VYW = [PT(U),PT(V)IW

& is called the scale of the homogeneous geometry ((X,Y),g9,w).

Definition 3.1 gives the simplest condition that guarantees that the curvature of an
inertial geometry takes values in the Lic algebra bundle of G. It implies that parallel
translation induces an isomorphism of the fibers of G'. This equivalence of the infinetisi-
mal kinematic symmetric groups gives a representation of postulate (i). Also note that
(3.1) also gives a representation of Thomas precession in terms of curvature.

Postulate (ii) has a more direct gcometric representation.

DEFINITON 3.2. ((X,Y),g,w) is semi-mctric if therc cxists A € E1( M) such that
Y C ker(X) andfor V € X(X) and U,W € X(Y')

(3.2) Vyg(U,W) = MV)g(U, V).

Definition 3.2 requires that V -parallel translation along X be a conformal transforma-
tion of the metric along Y. Since conformal transformations prescrve light cones and
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since V determines the affine structure of the complete set of frames determined by
Y, definition 3.2 states that for simultaneous observers the light cone is affine invariant.
The following propositions develop the consequences of definitions 3.1 and 3.2.

LEMMA 3.1. If ((X,Y),g,w) 1s semi-metric, then ((X,Y), g,w) Is homogeneous if
andonly if for U,V € X(X)
K — k-1

1
T MNUAV) + =

K

(3.3) VyA(V) — A\[*g(U, V) =0.

Proof. Since Vw = 0 it follows that for U € X(Y) and V € X(X),VJ(U) =
A(V)JU. But,since J(VJ)+(VJ)J =0, thisimplies for U,V € X(X)V,J(U) =
AM(V)JU, and consequently for U,V,W € X(X)V,9(U,W) = XV)g(U,W).
Since V is Levi-Civita and ¥ is torsion free (3.2) implies

1
VW) = = (MW A -
(3.4) 9(U, SCV,W)) = = (M(W)g(U, V) + AV)g(U, W)

=AU g(V, W) .
Also proposition 1.3 and 1.4 imply that (3.1) reduces to

VSV, W) =V, S(U, W) + (1) (S(U, (v, w))

(3.5) K
- S(V,S5(U,W))) = 0.

Since V is flatalong X, M|y is closed and so (3.4) and (3.5) imply that (3.3) is equiv-
alent to (3.1). |

Lemma 3.1 has a simpler expression in terms of radial vector fields. If D is a con-
nection, then a vector field X is D — radial if the endomorphism D X is a multiple
of the identity; that is, there is » € R — {0} suchthat DX = «]. If X is a form or
vector field, X be the metric dual of ).

LEMMA 3.2. If ((X,Y),g,w) is semi-metric, then ((X,Y), g,w) is homogeneous if
and only if X, = X\/|\? is V -radial and 7 % }, .

This lemma now allows a complete characterization of homogeneous, semi-metric
nonlinear geometries.

PROPOSITION 3.1. ((X,Y),g,w) ishhomogencous and semi-metric if and only if there
exists an affine metric § along X and V -radial vector field R € X(X) such that g
is conformal to g and Lgpg = cg forsome c € R.
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Proof. Suppose that ((X,Y),g,w) is semi-metric and homogeneous. Clearly, g is
conformal to an affine metric; in fact, § = (|g(X,, X,)|3257) ¢ is affine. Also since
X, is V-radial and S(X,,U) = U for U € X(X), itfollowsthat VX, = 51U
To see the other implication, it may be assumed that VR = I. Since the leaves of X
are connected, R has one and only onc zero on eachleaf of X. Let p: M — R be the
distance function along X to the zero of R. The hypothesis on g implies that g = p*g,
and so Lpg = (k+ 2)g. Further, dR = 0 andso g(VyR,V) = $Lpg(U,V) =
(%l) g(U, V). Therefore, R is V -radial, and since ((X,Y),g,w) is semi-metric,
lemma 3.1 implies homogeneity. =

Note that the proof of proposition 3.1 shows that Fermi transport is obtained when
=1and 2X, = X_.
We now show that the freedom to choose R and the scale x can be related to the
electromagnetic field and the electric charge. This interpretation will follow from the
standard symplectic representation of the electromagnetic field; see [4]

DEFINITION 3.3. A closed 2-form w’ satisfies a Maxwell condition for ((X,Y),g,w)
ifthereis e € R — {0} suchthatforall V € X(X) (i) i(V)(w' — ew) = 0 and (ii)
Vyw' =0.

In the case of the cotangent bundle this condition guarantees that the spray of the
Hamiltonian vector field Z' defined by w' and the metric determines a Lorentz force
law. If X is a homogeneity operator for w then, in terms of the present notation, Z' is
given by

(3.6) ei( X )5 = i( 2w,

Here g istheextensionto T*N of the affine metric along X . If the distance function p
is constant along Y, then £ 7’ is the spray for a Lorentz force law with field strength F
givenby 7m*F = w’' —ew. Notethat e isthe inverse of the charge. In this construction e
is most easily interpreted as a dimensionless scaling factor. The next proposition shows
that the dilation X is related to the potential of a 2-form that satisfies definition 3.3.

PROPOSITION 3.2. For a homogeneous and semi-metric nonlinear geometry let 8 =
W(J)N/|M\?. Then w' = d B satisfics a Maxwell condition with e = 51

Proof. Note that 8 = i( X, )w. The fact that X, is V-radial implies definition 3.3 (i).
This fact and the fact that dw’ = 0 imply definition 3.3 (ii). =

To see the relation between 8 and the standard representation of the vector potential
note that R = (i—"l)X,\ satisfies VR = I. Therefore the vector ficld o = ( %)Xa —
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X, isa V -parallel field, and consequently w' = (%)w + di(a)w. In the case of
the cotangent bundle, the vector field ( :T"]—) o represents the affine translation needed to
take the standard radial ficld X, on to the radial field defined by the nonlinear geometry
with dilation ).

What has been shown is that definitions 3.1 and 3.2 determine a class of nonlinear
geometries that differ from the geometry used to obtain Fermi transport by a choice of
scale and a choice of origin. Further, these degrees of freedom can be related to the
mechanical aspects of the electromagnetic field. There are similarities and differences
between this constructions and Weyl’s theory. The most significant difference is that in
this construction the connection to which the semi-metric condition applies is not the
dynamical space-time connection, that is, definition 3.2 determines the metric g and
not the connection V. Both costrunctions have a similar motivation for applyng the
semi-metric condition. However, in Weyl’s theory the scale variable that arises from
the semi-metric connection is hard to interpret and leads to physical inconsistencies; see
[1]. In contrast, when the semi-metric condition is employed as in definition 3.2 and
used in conjunction with definition 3.1, the scale appears as a real number and has an
immediate electromagnetic interpretation; namely it is related to the charge. In fact,
according to this construction, because the charge appears in definition 3.1 it is more
closely associated with the kinematic structure of space-time than with the field structure.
This fact could provide an explanation for the uniqueness of the electric charge. Note
that if a = 0, then the charge cancels in (3.6} leaving the geodesic equation of free
space. Both Weyl’s theory and this construction make new predictions about the nature
of space-time. In this construction, the relation between inertial frames need not be the
affine relation that is customarily and tacitly but rather a scaling relation.
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